Hiro Ito

Mikio Kano
Naoki Katoh
Yushi Uno (Eds.)

Computational Geometry
and Graph Theory

International Conference, KyotoCGGT 2007
Kyoto, Japan, June 2007
Revised Selected Papers

LNCS 4535

@ Springer




Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4535



Hiro Ito Mikio Kano Naoki Katoh
Yushi Uno (Eds.)

Computational Geometry
and Graph Theory

International Conference, KyotoCGGT 2007
Kyoto, Japan, June 11-15, 2007
Revised Selected Papers

@ Springer



Volume Editors

Hiro Ito

Kyoto University, School of Informatics
Yosida-Honmati, Kyoto 606-8501, Japan
E-mail: itohiro @kuis.kyoto-u.ac.jp

Mikio Kano

Ibaraki University

Department of Computer and Information Sciences Hitachi
Ibaraki 316-8511, Japan

E-mail: kano@mzx.ibaraki.ac.jp

Naoki Katoh

Kyoto University

Department of Architecture and Architectural Engineering
Nishikyo-ku, Kyoto, 615-8540, Japan

E-mail: naoki @archi.kyoto-u.ac.jp

Yushi Uno

Osaka Prefecture University, Graduate School of Science
Department of Mathematics and Information Sciences
Sakai 599-8531, Japan

E-mail: uno@mi.s.osakafu-u.ac.jp

Library of Congress Control Number: 2008939366

CR Subject Classification (1998): 1.3.5, G.2, F2.2, E.1

LNCS Sublibrary: SL 6 — Image Processing, Computer Vision, Pattern Recognition,
and Graphics

ISSN 0302-9743
ISBN-10 3-540-89549-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89549-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12537730 06/3180 543210



Jin Akiyama (right) and Vasek Chvital (left)
at the conference Banquet celebrating their 60th birthdays



Preface

This volume consists of the refereed proceedings of the Kyoto Conference on
Computational Geometry and Graph Theory (KyotoCGGT 2007), held at Kyoto
University in Kyoto, Japan, 11-15 June 2007, to honor Jin Akiyama and VaSek
Chvatal on their 60th birthdays. More than 200 participants from 20 countries
attended the conference.

Akiyama and Chvatal have been good friends since they met in Tokyo in
1979. Akiyama started the conference series Japan Conference on Discrete and
Computational Geometry (JCDCG) in 1997, which has been held annually since
that time. In 2001, the conference venue began to alternate between Tokyo and
selected Asian cities to attract and encourage Asian graph theorists and ge-
ometers. Chvétal, on the other hand, is world-renowned for his contributions to
discrete mathematics.

Since it was first organized in 1997, the annual JCDCG conference has at-
tracted a growing international participation. Earlier conferences were held in
Tokyo, followed by conferences in Manila, Philippines (2001), Bandung, Indone-
sia (2003), and Tianjin and Xi’an, China (2005). The proceedings of JCDCG
1998, 2000, 2002, 2004, IJCCGGT 2003 and CJCDGCGT 2005 were published
by Springer in the series Lecture Notes in Computer Science (LNCS) as volumes
1763, 2098, 2866, 3742, 3330 and 4381, respectively, while the proceedings of
JCDCG 2001 were also published by Springer as a special issue of the journal
Graphs and Combinatorics, Vol. 18, No. 4, 2002.

The organizers of KyotoCGGT 2007 gratefully acknowledge the support of
the sponsors, the work of the conference secretariat and the participation of the
principal speakers : William Cook, Greg Frederickson, Ferran Hurtado, Joseph
O’Rourke, Jdnos Pach, Bruce Reed, Akira Saito, Kokichi Sugihara, Godfried
Toussaint and Jorge Urrutia.

June 2008 Hiro Ito
Mikio Kano

Naoki Katoh

Yushi Uno
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Dudeney Transformation of Normal Tiles

Jin Akiyama!, Midori Kobayashi®>*, and Gisaku Nakamura3
! Tokai University, Tokyo, 151-0063, Japan
fwjb5117Cmb. infoweb.ne. jp
2 University of Shizuoka, Shizuoka, 422-8526, Japan
midori@u-shizuoka-ken.ac. jp
3 Tokai University, Tokyo, 151-0063, Japan

Abstract. Let A and B be convex polygons. We say that A and B are
D-equivalent if there are convex polygons A = A1, A2,..., A, = B and
Dudeney dissections of A; to A;11 (1 <7< n—1). A polygon is called a
tile if the 2-dimensional Euclidean plane can be tiled by congruent copies
of the polygon. A polygon is called a normal tile if the plane can be tiled
by congruent copies of the polygon which are obtained without turning
over the polygon. The numbers of types of convex tiles and convex normal
tiles are still uncertain. In this paper, we prove that all convex normal
tiles with the same area that we know so far are D-equivalent.

1 Introduction

H. E. Dudeney proposed the following problem [3]: “Cut an equilateral triangle
into four pieces and put them together to make a perfect square without turn-
ing over any piece.” After he gave an answer, he wrote “I add an illustration
showing the puzzle in a rather curious practical form, as it was made in polished
mahogany with brass hinges for use by certain audiences. It will be seen that
the four pieces form a sort of chain, and that when they are closed up in one
direction they form the triangle, and when closed in the other direction they
form the square.” (See Fig. 1.)

We will define a Dudeney dissection following Dudeney’s problem. Let A and
B be convex polygons with the same area. A Dudeney dissection of A to B is a
partition of A into a finite number of parts which can be reassembled to produce
B as follows: Hinge the adjoining parts of A on points along the perimeter of A,
then fix one of the parts and rotate the remaining parts about the fixed part to
form B in such a way that:

(1) All of the perimeter of A is in the interior of B.
(2) The perimeter of B consists of the dissection lines in the interior of A.
(3) The pieces of A are never turned over.

Note that it is not necessary that the pieces form a sort of chain. Dudeney
dissections of various convex polygons are discussed in [I] and [2]. A convex
polygon A is Dudeney dissectible if there exists a Dudeney dissection of A to B
for some convex polygon B.

* Partially supported by Grant-in-Aid for Scientific Research (C) Japan.

H. Tto et al. (Eds.): KyotoCGGT 2007, LNCS 4535, pp. 1-[13] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1.

Let A and B be convex polygons. We say that A can be transformed to B if
there are convex polygons Aq, As,..., A,, where n > 2, A; = A and A, = B,
and Dudeney dissections of A; to A;41 (1 < i < n — 1). We denote this by
A — B. Let P be the set of all Dudeney dissectible convex polygons with a
given area. Then we have, for A, B,C € P,

(i) A— 4,
(ii) A — B implies B — A,
(iiil) A — B, B — C implies A — C.

Thus the transformation is an equivalence relation of P. We say that A and B
are D-equivalent or that A is D-equivalent to B if A — B.

A polygon is called a tile if the plane R? (2-dimensional Euclidean plane) can
be tiled by congruent copies of the polygon, where we say that R? can be tiled
if R? is covered without gaps or (2-dimensional) overlaps. A polygon is called
a normal tile if the plane R? can be tiled by congruent copies of the polygon
which are obtained without turning over the polygon.

It is known that if a convex n-gon is a tile, then we have n < 6 ([§]). Every
triangle and every quadrilateral are tiles. Let ABCDEF be a hexagonal tile where
a=FA, b= AB, c=BC, d=CD, e = DE, f = EF. All convex hexagonal tiles
have been classified into three types: type 1: /A + /B + /C = 360°, a = d,
type 2: /A + /B + /D = 360°, a = d,c = e, type 3: /A =/C =/E =
120°, a = b,c¢ = d,e = f. There are no other convex hexagonal tiles ([5], p494).
However, the number of types of convex pentagonal tiles is still uncertain. At
present, 14 types of convex pentagons are known to be tiles ([9], [10], [I3]). We
follow the numbering of the types given in [5] (p492) and [13].

Every triangle, every quadrilateral, hexagons of types 1,3, and pentagons of
types 1,3,4,5, 6 are normal tiles. Pentagons and hexagons of the other types are
normal tiles if they have line symmetry.

All convex normal tiles that we know so far are the following: (1) every trian-
gle, (2) every convex quadrilateral, (3) pentagons of types 1,3,4,5,6, (4) pen-
tagons of types 2,7,8,9,10,11,12,13, 14 with line symmetry, (5) hexagons of
types 1,3, (6) hexagons of type 2 with line symmetry.

In this paper, we will prove that all the above polygons with a given area are
D-equivalent, that is, we will prove the following theorem.



Dudeney Transformation of Normal Tiles 3

Theorem 1. The following polygons with the same area are all D-equivalent:
(1) every triangle,
(2) every convexr quadrilateral,
(3) pentagons of types 1,3,4,5,6,
(4) pentagons of types 2,7,8,9,10,11,12,13, 14 with line symmetry,
(5) hexagons of types 1,3,

6) hexagons of type 2 with line symmetry.

(

In this paper, we consider only convex polygons, so we sometimes call them just
“polygons” for simplicity.

2 Triangles and Quadrilaterals

Proposition 2.1. All triangles and quadrilaterals with the same area are D-
equivalent.

Proof. Suppose that triangles and quadrilaterals we consider here have the area
1. The proof consists of four steps:

Step 1. Any triangle can be transformed to a parallelogram.
Step 2. Any quadrilateral can be transformed to a parallelogram.
Step 3. Any parallelogram can be transformed to a rectangle.
Step 4. Any rectangle can be transformed to a square.

If we prove Steps 1, 2, 3 and 4, then we find any triangle and any quadrilateral
can be transformed to a square, thus we complete the proof.

Step 1. Let ABC be any triangle. Let L, M, N be the midpoints of AB, BC,
CA, respectively. Draw dotted lines LN and AM and tile the plane with the
triangle ABC as shown in Fig. 2. Cut it along the dotted lines, then we have
four parts. Rotate three parts of them as shown in the figure, then we obtain a
parallelogram DEFG.

Step 2. Let ABCD be any (convex) quadrilateral. Let L, M, N, K be the mid-
points of AB, BC, CD, DA, respectively. Draw dotted lines LN and KM and
tile the plane with the quadrilateral ABCD as shown in Fig. 3. Cut it along
the dotted lines, then we have four parts. Rotate three parts of them as shown
in the figure, then we obtain a parallelogram EFGH. We note that Step 1 is a
degenerate case of Step 2.

Fig. 2.
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Fig. 4.

Step 3. Let ABCD be any parallelogram. We can assume AB < BC and /B
< 90°. Let L and M be the midpoints of AB and CD, respectively. Let S and T be
points on the segments AD and BC, respectively, such that ST is perpendicular
to LM, and the intersection point N of ST and LM is in the parallelogram ABCD.
We can choose such points S, T under our assumption. Draw dotted lines LM
and ST. Tile the plane with the parallelogram ABCD as shown in Fig. 4. Cut it
along the dotted lines, then we have four parts. Rotate three parts of them as
shown in the figure, then we obtain a rectangle EFGH.

Step 4. We will prove the following Lemmata.

Lemma 2.1. Any rectangle can be transformed to a rectangle such that all side-
lengths are less than or equal to \/2.

Proof. Let ABCD be any rectangle with AB > BC. Put a =AB.

If @ > /2, cut the rectangle ABCD into five pieces as shown in Fig. 5, where
AE=FB=DH=GC= a/4 and I, J, K, L are midpoints of AD, EH, FG, BC,
respectively. Rotate four pieces as shown in the figure, we obtain a new rectangle
A'B'C'D’ with A’B’= a/2 and B'C'= 2/a.

(i) When v/2 < a < 2, then a/2 < 1 < 2/a < v/2. The side-lengths A’B’ and
B’C’ of the new rectangle are less than v/2.

(i) When 2 < a < 2v/2, then 1 < a/2 < /2. The side-lengths A’B’ and B'C’
of the new rectangle are less than or equal to v/2.

(iii) When a > 2+/2, then a/2 > /2. The side-length A’B’ of the new rectangle
is still greater than v/2. In this case, repeat the above Dudeney dissection until
all the side-lengths of a new rectangle are less than or equal to v/2.

Thus we complete the proof of Lemma 2.1. O
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Fig. 7.

1

Lemma 2.2. Any rectangle of size axa™" can be transformed to a square, where

a,a”1 < V2.

Proof. The following dissection is Taylor’s dissection applied in the case of rec-
tangles. (For Taylor’s dissection, see [4] p102, [12] p89.) Let ABCD be any rec-
tangle with AB < BC. Put a =BC, then we have 1 < a < V2. We may assume
a # 1. Let O be the center of the rectangle ABCD, and K, L, M, N the midpoints
of AB, BC, CD, DA, respectively. Let T be the point on the segment ND with
OT = 1/2. We can choose the point T since OD > 1/2 and ON < 1/2 (because
of a > 1). Let P be the point on the segment OT such that MP is perpendicular
to OT. We can choose such a point P. In fact, draw the uper semicircle with the
diameter OM, then it is inside or on the rectangle OMDN as a < V2. We note
that when a = /2, the point P corresponds to the point T.



6 J. Akiyama, M. Kobayashi, and G. Nakamura

Similarly we draw segments OS and KQ (Fig. 6). Then cut the rectangle
ABCD into four pieces along the lines TS, MP, KQ, and rotate them as shown
in Fig. 7. Then we obtain a rectangle. We see that it is a square since QT + TP
= 1. This completes the proof of Lemma 2.2. O

Therefore we complete Step 4 and then the proof of Prop. 2.1. O

3 Hexagons

All convex hexagonal tiles have been classified into three types: type 1, 2, 3. There
are no other convex hexagonal tiles. Hexagons of type 1 and 3 and hexagons of
type 2 with line symmetry are normal tiles. In this section, we prove the following
proposition.

Proposition 3.1. Hezxagons of type 1 and 3 and hexagons of type 2 with line
symmetry can be transformed to quadrilaterals.

Proof. Let ABCDEF be a hexagon. Put a = FA; b= AB, c=BC,d=CD, e =
DE, f = EF.

(1) Assume that ABCDEF is a hexagon of type 1, i.e., /A + /B + /C =
360°, a = d. First we will show that the hexagon can be transformed to a parallel
hexagon. We call a hexagon parallel if all pairs of opposite sides are parallel and
have the same length. Let K, L, M, N be the midpoints of AB, BC, DE, EF,
respectively. Let P and Q be points such that KP is parallel to QM and LP is
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Fig. 11.

parallel to QN. In the tiling of Fig. 8, cut the hexagon into four pieces along the
dotted lines and rotate three pieces, then we obtain a parallel hexagon.

Next we will show that any parallel hexagon A'B’C’'D’E’F’ can be transformed
to a parallelogram. Let L, M, N, K be the midpoints of A’B’, C'D’, D'E/, F'A’,
respectively. As shown in Fig. 9, the parallel hexagon can be transformed to a
parallelogram.

Thus hexagons of type 1 can be transformed to quadrilaterals.

(2) Assume that ABCDEF is a hexagon of type 3, i.e., /A =/C =/E =
120°, a = b,c = d,e = f. The hexagon can be transformed to a quadrilateral as
shown in Fig. 10.

(3) Assume that ABCDEF is a hexagon of type 2, i.e., /A + /B + /D =
360°, a = d,c = e. When the hexagon has line symmetry, it has either a line of
symmetry through opposite sides, or a line of symmetry through opposite points.
In the former case, the opposite sides are parallel and have the same lengths, so
the hexagon is also of type 1. So we consider only the latter case.

If the hexagon has a line of symmetry AD, then we havea = b,c = f,d=¢, /B
=/F,/C=/E.Sowehavea=b=c=d =e= f. Let L, M, N, K be midpoints
of BC, CD, EF, FA. The hexagon can be transformed to a quadrilateral as shown
in Fig. 11.

If the hexagon has a line of symmetry BE, then we have b = c,e = f, /A
= /C, /F = /D. So we have ¢= f and /A +/B + /F = 360°. It is also of
type 1.
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Fig. 12.

If the hexagon has a line of symmetry FC, then it is relatively the same as the
hexagon with a line of symmetry AD. So it can be transformed to a quadrilateral.

Thus hexagons of type 2 with line symmetry can be transformed to a quadri-
lateral.

This completes the proof of Prop. 3.1. O

4 Pentagons

At the present, 14 types of convex pentagons are known to be tiles. Pentagons
of types 1,3,4,5,6 are normal tiles, and pentagons of the other types are nor-
mal tiles if they have line symmetry. In this section, we prove the following
propositions.

Proposition 4.1. A pentagon of type 1,3,4,5,6 can be transformed to a triangle
or a quadrilateral.

Proof. Let ABCDE be a pentagon. Put a = EA, b= AB, ¢ =BC, d=CD, e =
DE.

(1) Assume that ABCDE is a pentagon of type 1, i.e., /D 4+ /E = 180°. Cut
the pentagon into four pieces along the dotted lines and rotate three pieces as
shown in Fig. 12, where K, L, M are the midpoints of AB, BC, DE, respectively,
and KL and MN are parallel. Then we obtain a parallelogram.

(2) Assume that ABCDE is a pentagon of type 3, ie.,, /A = /C = /D =
120°, a = b,d = ¢+ e. The pentagon can be transformed to a rhombus as shown
in Fig. 13.

(3) Assume that ABCDE is a pentagon of type 4, i.e., /A = /D = 90°,
a = b,d = e. The pentagon can be transformed to a triangle as shown in Fig.
14, where M is the midpoint of BC.

(4) Assume that ABCDE is a pentagon of type 5, i.e., /A = 60°, /C = 120°,
a = b,c = d. The pentagon can be transformed to an equilateral triangle as
shown in Fig. 15, where M is the midpoint of DE.

(5) Assume that ABCDE is a pentagon of type 6, i.e., /A + /B +/D = 360°,
/A =2/C,a=0b=e,c=d. The pentagon can be transformed to a triangle as
shown in Fig. 16, where M is the midpoint of AB.

This completes the proof of Prop. 4.1. O
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Fig. 18.

Proposition 4.2. If a pentagon of type 2,7,8,9,10,11,12,13, 14 has line sym-
metry, it can be transformed to a triangle or a quadrilateral.

Proof. Let ABCDE be a pentagon. Put a = EA, b= AB, ¢ =BC, d=CD, e =
DE.

(1) Assume that ABCDE is a pentagon of type 2, i.e., /C + /E = 180°, a = d.

(i) If the pentagon has a line of symmetry through point A, we have /B =
/E, /C = /D, a=0b, c=e. Then we have /A = 180° which is a contradiction.
Thus the pentagon doesn’t have a line of symmetry through point A.

(ii) If the pentagon has a line of symmetry through point B, we have /A =
/C, /D = /E, b = ¢. Then we have /B = 180° which is a contradiction. Thus
the pentagon doesn’t have a line of symmetry through point B.

(iii) If the pentagon has a line of symmetry through point C, we have /B =
/D, /A =/E, c=d,b=e. Then we have /B + /D = 180° + /C. If /C < 60°,
then we have /C +/D < 180°, so we have a < d which contradicts to a = d. If
60° < /C < 90°, then it can be transformed to a triangle as shown in Fig. 17,
where K, L, M are the midpoints of CD, EA, AB, respectively. If /C = 90°,
then /E = /A =90°. It is also a pentagon of type 1. If 90° < /C < 180°, then
0° < /E < 90°. Thus we have a > d which contradicts to a = d.

(iv) If the pentagon has a line of symmetry through point D, then we have
/A =/B,/C=/E,a=c¢,d=e. It can be transformed to a triangle as shown
in Fig. 18.

(v) If the pentagon has a line of symmetry through point E, then we have /A
= /D, /B =/C,a=eb=d. Then we have /A + /D = 180° + /E. If /E
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Fig. 19.

Fig. 20.

<60°, /A = /D < 120°, so we have /A +/E < 180° and /D +/E < 180°. It
contradicts to a = b =d = e. If 60° < /E < 90°, then the pentagon ABCDE
can be transformed to a pentagon HBDJI of type 1 as shown in Fig. 19, where
M is the midpoint of AB and HB, AG, 1J are parallel.

If /E = 90°, then /B = /C = 90°. It is also of type 1. If 90° < /E < 180°,
then the pentagon ABCDE can be transformed to a quadrilateral EIJG as shown
in Fig. 20, where M is the midpoint of DC; EF, GH, SB are parallel and AF =
DG = CH.

The proofs of the following are omitted because they are similar to the above.

(2) Assume that ABCDE is a pentagon of type 7, i.e., 2/B + /C = 2/D +
/A = 360° a = b = c = d. If the pentagon has a line of symmetry through
point C, then it is also of type 1. There are no pentagons of type 7 with a line
of symmetry through point A, B, D, or E.

(3) Assume that ABCDE is a pentagon of type 8, i.e., 2/A + /B =2/D +
/C = 360° a =b=c=d.If the pentagon has a line of symmetry through point
E, then it can be transformed to a triangle as shown in Fig. 21. There are no
pentagons of type 8 with a line of symmetry through point A, B, C, or D.

(4) A pentagon of type 9 is characterized by 2/E + /B = 2/D + /C = 360°,
a = b = c = d. There are no pentagons of type 9 with line symmetry.

(5) Assume that ABCDE is a pentagon of type 10, i.e., /A =90°, /B + /E =
180°,2/D + /E =2/C + /B = 360°, a = b = c + e. If the pentagon has a line
of symmetry through point A, then it is also of type 1. There are no pentagons
of type 10 with a line of symmetry through point B, C, D, or E.
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(6) A pentagon of type 11 is characterized by /A = 90°, /C + /E = 180°,
2/B + /C = 360°, d = e = 2a + c¢. There are no pentagons of type 11 with line
Ssymimetry.

(7) A pentagon of type 12 is characterized by /A = 90°, /C + /E = 180°,
2/B 4+ /C = 360°, 2a = ¢+ ¢ = d. There are no pentagons of type 12 with line
symmetry.

(8) A pentagon of type 13 is characterized by /A = /C = 90°,2/B + /D =
2/E + /D = 360°, ¢ = d, 2c = e. There are no pentagons of type 13 with line
symmetry.

(9) A pentagon of type 14 is characterized by /A = 90°, /C + /E = 180°,
2/B + /C = 360°, d = e = 2a, a = c. There are no pentagons of type 14 with
line symmetry.

This completes the proof of Prop. 4.2. O

From Prop. 2.1, 3.1, 4.1 and 4.2, we obtain Theorem 1.
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Abstract. A tile T in the plane is a compact set whose boundary is a
simple closed curve. A family of tiles in the plane is called a tiling if it
covers the plane with no gaps and no (2-dimensional) overlaps. Let V be a
doubly covered square, that is, a flat polygon consisting of two congruent
square faces joined together along each of their corresponding edges. We
prove that for every development (unfolding) T of V, there is a tiling
of congruent copies of T whose chromatic number is at most three. By
using this fact, we prove that chromatic numbers of specified isohedral
tilings with half-turn symmetry are at most three. Then, we notice that
self-replicating tiles with fractal boundaries derived from developments
of a doubly covered square, which we studied in [3,4], are three-colorable
in a sense.

1 Introduction

We consider figures in the Euclidean plane. A tile in the plane is a compact set
whose boundary is a simple closed curve. A family of tiles, 7 = {7, }nea, is called
a tiling if it covers the plane with no gaps and no (2-dimensional) overlaps. Two
tiles in the tiling 7 are adjacent if the topological dimension of their intersection
is one. A doubly covered square is a flat polygon consisting of two congruent
square faces joined together along each of their corresponding edges. A tile T’
is called a development of a doubly covered square V if there is a map fr from
T onto V' which is locally isometric and whose image has no (2-dimensional)
overlaps.

Section 2 is devoted to preliminaries. We showed in [3,5] that for every develop-
ment T of a doubly-covered square V there is a tiling 7 consisting of congruent
copies of T. In Section 3, we prove that such tiling 7 has chromatic number
x(7T) < 3, that is, there is an assignment of three colors to the tiles in 7 in such
a way that any two adjacent tiles have different colors (Theorem 1). Notice that
any tiling 7 of congruent copies of T satisfies x(7) < 4 by Four Colar theorem,
but it is not necessary to satisfy x(7) < 3 in general (see Fig. 1 for an example;
T is a development of V' and any tiling containing six congruent copies of T' in
Fig. 1(b) has chromatic number four).

H. Tto et al. (Eds.): KyotoCGGT 2007, LNCS 4535, pp. 14]24] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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(a) A development (b) ©

Fig. 1. An example of a tiling whose chromatic number is four

An isohedral tiling of the plane is a tiling of congruent copies of a single tile
so that the symmetry group of the tiling acts transitively on the tiles. In Section
4, we prove that a specified isohedral tiling 7 with half-turn symmetry has
chromatic number x(7) < 3 (Theorem 2). A tile T is called self-replicating or
k-replicating if there are k congruent copies of T" so that interiors of any two of
them are disjoint and that their union is similar to the original figure T'. A simple
curve in the plane is called fractal if its Hausdorff-dimension is more than one.
In Section 5, we show sufficient conditions under which self-replicating tiles with
fractal boundaries can be derived from developments of doubly-covered squares.
These tiles are three-colorable in a sense (Theorem 4).

2 Preliminaries

Let T be a development of a doubly covered square V' with a map fr from T onto
V' which is locally isometric and whose image has no (2-dimensional) overlaps.
We denote by fr(0T) the image of the boundary 9T (Fig.2(b)). A point A in 0T
is called a leaf-point if its image is a leaf (an end-point) of fr(9T) (for example,
A,C,D in Fig. 2(a)). A point P in 9T is called a singular point if there are
more than two points (including P) in 9T whose images by fr are identical (for
example, P, P» and Ps in Fig. 2(a)).

Proposition 1. ([6]) Let T be a development of the doubly covered square V.

(1) The image fr(0T) is a tree, that is, it is connected and has no cycle
(Fig. 2(c)).

B, C B, B C

B C
B 3 -
A D 4 D
P,
(@) A development (b)) The image f;(0T) (c) The tree

Fig. 2. A development of a doubly covered square
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(2) All vertices of V are in fr(0T) (Fig. 2(b)).
(3) Every leaf-point in OT is only one pre-image of some vertex in V by fr
(Fig. 2(a)(b)).

Proposition 2. Let T be a development of V. Then there are at least two leaf-
points.

Proof. Since any tree has at least two leaves and leaves of the tree fr(9T) are
vertices of V', there are at least two leaf-points in 0T O

Proposition 3. (/3,5]) Every development T of V tiles the plane, that is, there
s a family of congruent copies of T which is a tiling.

Carve distinct figures on each of the faces of V', dip the faces in ink and print the
figures on a blank sheet as follows: First, print the figures on one face, choose
one edge of the face as an axis, turn V over along the axis and print the figure
on the other face. Repeat the process continuously. The printed pattern that
results is a periodic tiling of the plane. Moreover the same pattern will result
regardless of the direction or order in which V is turned over. It is convenient
to use orthogonal coordinates (z,y) in the plane and consider a development of
V' as a figure in the plane, so that faces of V' corresponds to unit squares in the
plane. A point P(x,y) on the plane is a lattice point if both x and y are integers.
Hence lattice points are traces of vertices of V.

Definition 1. (/1]) Two points P and Q in the plane are equivalent, denoted
by P = Q, if either the midpoint of the segment between them is a lattice point
or if both the differences between corresponding coordinates are even integers.

Proposition 4. ([1]) A tile T in the plane is a development of V if and only if
T consists of all representatives of the equivalence classes defined by Definition 1
such that no two points in its interior are equivalent.

3 Colorings of Tilings Derived from Developments

If there is a coloring with k colors for a tiling 7, the tiling is said to be k-
colorable. The minimum of such k is called the chromatic number of the tiling
7, and is denoted by x(7).

In this section, V is a doubly covered square and T is a development of V' in
the plane with orthogonal xy-coordinates. We denote by F4 the set obtained by
a half-circular rotation of F' about a point A in the plane, and by F + (a,b) the
translate {(z + a,y + b) : (z,y) € F'}. We use the symbol F, instead of Fp.

Lemma 1. (/3]) The family
(T + (2k,20) - k,l € Z} U{Ta + (2k,20) : k1 € Z}

is a tiling for any lattice point A in the plane.
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Proof. For any point P in the plane, there is a point ) in T" which is equivalent
to P, which means the differences of corresponding xy-coordinates are even, or
the midpoint of P and @ is a lattice point. In the former case, P is in T+ (2k, 21)
for some k,l € ZZ.

In the latter case, the point R symmetric to ) about A is in T4 and the
differences of corresponding zy-coordinates of P and R are even, so P is in
Ta + (2k,21) for some k,l € Z.

Therefore, the family of {T + (2k,20) : k,l € Z} U {Ta + (2k,2l) : k,l € Z}
covers the plane. Since the interior of T has no two equivalent points, the family
is a tiling. a

Let A be a lattice point in the plane with zy-coordinates. Then the tiling 7 =
{T + (2k,21) : k,l € Z} U{Ta+ (2k,21) : k,l € ZZ} does not depend on the
choice of A, so we call T the stamp method tiling by T.

Lemma 2. Let A be a leaf-point of OT. Then the boundary O(TUT4) is a simple
closed curve and the point A is an interior point of T U T 4.

Proof. Let A be a leaf-point of 9T'. Put marks on all points which are leaf-points
or singular points in 9T'. Then the point A is marked and there are two marked
points P, which are next to the point A along the simple closed curve 0T.
Since A is a leaf-point of 9T, P and ) are symmetric about the point A and
they are equivalent (Fig.2(a)). The boundary O(T U Tjy) is the curve obtained
by removing 9T N T4 from 0T U 9Ty and adding P, Q. Hence O(T U T4) is a
simple closed curve. Then the point A is in the interior of T'U T4. O

Definition 2. Let A(0,0) and B(m,n) be distinct leaf-points of 0T, whose exis-
tence is guaranteed by Proposition 2. We denote the set of all lattice points with
even coordinates by W = {(2k,2l : k,l € Z}.

Two points P;(2k;,21;) € W (i = 1,2) are called (m,n)-equivalent, denoted by
Py =) P if (2k1 — 2k2,21y — 2l2) = (tm, tn) for some integer t.

Since the relation =(y, ) is an equivalence relation on W, the set W is classi-
fied into the equivalence classes {Cy}aca, where we denote by C, the class with
the origin O(0,0).

Lemma 3. Let A= 0(0,0) and B(m,n) be leaf-points of OT'. Let
F, = U {TUT,+ (a,b)} foraceA.
(a,b)eCq

) Fo = F, + (a,b) for any o € A and any (a,b) € C,.
) The boundary of F, (a € A) consists of two disjoint simple curves.
) The union of all Fy (a € A) covers the plane.

(1
(2
(3
(4) The interiors of Fy and Fg are disjoint for any distinct a,# 3 € A.

Proof. Let A= 0(0,0) and B(m,n) be leaf-points of 9T
(1) By F, ={T'UT, + (2mt,2nt) : t € Z} we have
Fo = {T UT, + (a,b) + (2mt, 2nt) : t € Z} = F, + (a,b) .

for any (a,b) € C,.
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Since the origin (0, 0) is an interior point of T UT, by Lemma 2, all points in
C, ={(2mt,2nt) : t € ZZ} are in the interior of F, = {T' UT, + (2mt, 2nt) :
t € ZZ}. Since the point B(m,n) is a leaf-point of 9T, the point B is in the
interior of TUTg = T U{T, + (2m,2n)} by Lemma 2. Hence all points in
the set {(2t 4+ 1)m, (2t + 1)n : t € ZZ} are in the interior of F,.

We can draw a simple curve in the interior of F, which passes through
all points {(mt,nt) : t € ZZ}. Using a process similar to the one used in the
proof of Lemma 2, we can prove that for each family

{(T'UT,) + (2mt,2nt) : t =0,£1,£2,...,£n} (n € IN),

the boundary of its union is a simple closed curve.

Therefore, the boundary of F,, consists of two disjoint simple curves. Since
Fo = F,+(a,b) for (a,b) € Cy (a € A), the boundary of F, consists of two
disjoint simple curves.

Since

U{Fa : 0 € M= {TUT,+(a,) : (a,b) W= {TUTo+(2K,20) : k, 1€ 2}

and the family {T'U T, + (2k,2!) : k,l € ZZ} is a tiling, the union of all F,
covers the plane.

Since the family {TUT, + (2k,2l) : k,l € ZZ} is a tiling, the interiors of any
two distinct sets Fy, Fg (a # [3) are disjoint. O

Definition 3. We define an infinite graph G = G as follows:

(1)

(2)

The set of vertices in G consists of all elements of the tiling
{T + (2k,20) : k,l € Z} U{T, + (2k,21) : k,l € ZZ}.

Two vertices in G are joined by an edge if and only if the intersection of
corresponding congruent copies of T has the topological dimension one.

Proposition 5. We can draw the graph G = G satisfying the following condi-
tions:

(1)
(2)
3)

G is a geometric planar graph in the plane.
G is symmetric about the origin.
The translate G + (2k, 2l) is identical to G for any k,l € ZZ.

Proof. (1) holds by the definition of G. (2) holds because the tiling

{T + (2k,21) : k1 € Z} U{T, + (2k,2l) : k,l € ZZ}

is symmetric with respect to the origin. (3) holds by Lemma 3(1). O

Let A = O(0,0) and B(m,n) be distinct leaf-points of 9T'. Denote by G, the
induced subgraph of G by the set of vertices corresponding to

{T + (2km,2In) : k,l € ZZ} U{T, + (2km, 2In) : k,l € ZZ}.
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SEES A

Fig. 3. A graph which consists of an infinite path and additional edges

TAVAVAVAVAVAVA
VAVAVAVAVAVAV

AVAVAVAVAVAVA
\VAVAVAVAVAVAV,

(@ H, () H, (c) Hs

Fig. 4. The graphs H1, H> and H3

Proposition 6. Let A = 0(0,0) and B(m,n) be distinct leaf-points of OT. The
induced subgraph G, is either an infinite path, or the graph consisting of an
infinite path and additional edges which connect any two vertices with distance
two in the infinite path (Fig. 3).

Proof. Since the interior of F, is connected, GG, contains an infinite path. If G,
has an edge joining two points with distance greater than two in the infinite
path, then some edges are crossing each other in their interiors by condition (3)
in Proposition 5, which is a contradiction since G is a geometric planar graph.
So, G, is either an infinite path or a graph isomorphic to the graph in Fig. 3. O

Proposition 7. Suppose G, is an infinite path. Then the graph G is isomorphic
to either a subgraph of the graph Hy or a subgraph of the graph Ho shown in

Fig. 4(a)(b).

Proof. Since G is a geometric planar graph and satisfies conditions in Proposi-
tion 5, we get the graphs H; and Hj in Fig. 4(a)(b) by drawing as many edges
as possible among vertices in infinitely many translates of G,. H; and H, are
maximal graphs, so the graph G is isomorphic to one of their subgraphs. O

Proposition 8. Suppose G, is a graph isomorphic to the graph in Fig. 3. Then
the graph G is isomorphic to a subgraph of the graph Hj showed in Fig. 4(c)
(see Fig. 5for an example).

Proof. Since G is a geometric planar graph and satisfies conditions in Proposition
5, we get the graph in Fig. 4(c) by drawing as many edges as possible. This graph
Hjs is a maximal graph.

Theorem 1. For every development T of a doubly covered square V there is an

isohedral tiling F consisting of congruent copies of T which is three-colorable,
that is, x(F) < 3.
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g2l 27 <

(a) Front (b) Back (c)

% % S l (f) A development of V'
(d) (e)
SRR 25
EE i?%% ks
é’lf}J
(h) Gyis isomorphic to H;

S

(@) G,

Fig.5. An example for the graph H3

Proof. 1t is easy to see that graphs Hy, Ho and Hs in Fig. 4 are three-colorable.
Since G is isomorphic to a subgraph of these graphs, G is also three-colorable.
Therefore the tiling

F=AT+ (2k,2l) : k,l € Z}U{TO+ (2k,2l) : k,l e ZZ}
is three-colorable.

Corollary 1. Let T be a development of the doubly covered square V in the
plane with xy-coordinates. Let A = O(0,0) and B(m,n) be leaf-points of the
boundary OT. Then m and n are relatively prime.

Proof. If there is a common divisor s > 1 of m and n, then C, = {(2mt,2nt : t €
Z} and C, + (2m/s,2n/s) are distinct classes with respect to the equivalence
relation =(,, ,,. Since there is a simple curve I" joining all points {mt,nt) : t €
ZZ} in the interior of F, = {T'UT, + (2mt,2nt) : t € ZZ} by Lemma 3(2),
the translate I' + (2m/s,2n/s) is a simple curve joining all points in the class
C(2m/s,2n)s) by Lemma 3(1)(2), which contradicts Lemma 3(4). O

4 Chromatic Numbers of Specified Isohedral Tilings

We denote by II(e1,ez2) the plane with oblique coordinates determined by two
independent unit vectors e;, es whose lengths are not necessary equal. We can
generalize Theorem 1 as follows:

Theorem 2. Let T be an isohedral tiling of a single tile T with two translations
by independent vectors 2e1,2es and half-turn symmetry about lattice points in
II(e1, e3). Then F is three-colorable, that is, x(7) < 3.
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Proof. Let 7 be an isohedral tiling of a single tile 7" with two translations by
independent vectors 2ep,2es and half-turn symmetry about lattice points in
II(ey,e2). Let ¥ be the affine transformation defined by the inverse of the matirix
(e1,e2). Then the image of 7 is a tiling in the plane and it is represented by

(O(T) + (2k,20) : k1 € ZYU{p(T)o + (2k,20) : k1 € Z}

in the plane with orthogonal zy-coordinates. By Proposition 4, the image of T’
by 1) is a development of a doubly covered square. Hence the image of 7 by
is three-colorable by Theorem 1, so x(7) < 3. O

A doubly covered square may be considered as a tetrahedron consisting of four
congruent isosceles right triangular faces.

Corollary 2. For every development T of a tetrahedron consisting of four con-
gruent acute triangular faces, there is an isohedral tiling T consisting of congru-
ent copies of T satisfying x(F) < 3.

Proof. Tt is proved in [4,5] that every development T of a tetrahedron consisting
of four congruent acute triangular faces is described in the plane with obilique
coordinates and it has an isohedral tiling consisting of congruent copies of T
satisfying all conditions in Theorem 2. Hence x(F) < 3 by Theorem 2. O

Conjecture 1. The chromatic numbers of isohedral tilings of the plane are at
most three.

5 Self-replicating Tiles and Fractals

We mentioned self-replicating tiles and fractals derived from a development of
a doubly covered square in [3,4]. We continue the discussion of this subject in
this section. Let A(a,b) be a lattice point in the plane I7(e1, es) where e, es are
relatively orthogonal vectors. We denote coordinates by (a,b)(, e,) instead of
(a,b) when necessary.

Theorem 3. ([4]) Let T be a development of a doubly covered square V in the
plane with xy-coordinates so that the origin is a leaf-point of OT . Then the union

TUT, is a development of a doubly covered square whose faces are congruent to
the square ABCD, where A(0,-1), B(—1,0), C(0,1), D(1,0) (Fig. 6).

Proof. Let u1,us be basic vectors in the plane with xy-coordinates. Rotate w1, us
by 7/4, multiply their lengths by v/2 and denote the resulting vectors by e1, es
respectively. Let I1(e1, e2) be the plane with the origin O(0,0)(, ,) = O(0,1).
Then all lattice points in I1(e,e2) are also lattice points in the plane with zy-
coordinates. Since the origin is a leaf-point of 9T, the origin O(0, 0) is an interior
point of T UT, by Lemma 2.

Let S =T UT,. The symbol S, stands for So,, ., Since

{SUSy+ (2k,20) (1,00 : kol € Z} = {T UT, + (2k,21) : k,1 € 7}
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holds and the family {T'UT, + (2k,2l) : k,l € ZZ} is a tiling, the family
{S us, + (2k72l)(e1,e2) t ke Z}

is also a tiling. By Proposition 4, S = T U T, is a development of a dou-
bly covered square whose faces are congruent to the square ABCD, where
A(0,-1), B(1,0),C(0,1),D(-1,0). O

We call a tile T in the plane a k-omino if T' consists of k congruent squares and
if the intersection of any two of those squares is a point, one edge or empty.

Definition 4. Let T be a development of a doubly covered square V in the plane
with xy-coordinates. Suppose T be a k-omino. We define Condition 1 as follows:

Condition 1. Four points (0,0), (0,1),(1,1) and (1,0) are leaf-points of IT and
they are mid-points of some edges of squares in the k-omino T (Fig. 7(a)).

Definition 5. (/4]) Let T and S be developments of V in the plane with xy-
coordinates. Suppose T and S are a ki-omino and a ko-omino respectively, and
they satisfy Condition 1. Reduce V. and T by the ratio 1/v/ka and denote the
resulting figures by V* and T* respectively. Then T* is a development of V*.
Assign the labels a,b,c,d to the four points in OT™* corresponding to leaf-points
of OT in clockwise order along the boundary curve. Let F be a square in ko-
omino S with the origin. Then F' is a development of V*. We define a set S(T)
as follows.

Step (1) Draw tilted squares by connecting midpoints of four edges in each square
in the ko-omino of S (Fig. 7(a)). Assign the labels a, b, c,d to vertices of
each tilted square in clockwise order, where the origin is assigned by a.
Then the assignment is unique because it is similar to part of the stamp
method tiling by the development F of V* (Fig. 7(a)).

Step (2) Replace each square in the ka-omino S by a congruent copy of T* such
that four labels a,b,c,d are matched to the same labels on each square
of S. We denote the resulting figure by S(T') (Fig. 1(b) where S =T).

Lemma 4. LetT, S be developments of V in the plane with xy-coordinates. Sup-
pose T, S are ki-omino and ko-omino respectively and they satisfy Condition 1.
Then S(T) is another development of V' which is a kike-omino and satisfies
Condition 1.



Chromatic Numbers of Specified Isohedral Tilings 23

(@) s=T ) s(n=T, (o) S(Ty)=T; (d) X and Y axes

Fig. 7. The process to get S(T)

Proof. Let eq, es be two orthogonal vectors parallel to edges in the tilted squares
in S with lengths equal to the lengths of the edges of the tilted squares (for
example, unit vectors of XY-coordinates in Fig. 7(d)). Then if two points P
and @ are equivalent in the plane with xy-coordinates, then P and @) are also
equivalent in 7 (e, e2). By the definition of S(T'), S(T') consists of a subfamily
of the stamp method tiling by T*. Since the family {SU S, + (2k,2l) : k,l € ZZ}
is a tiling, forming the elements of the tiling

{T* + (2]4;,2[)(61’@2) ckleZPUu{(T) + (2]{:,2[)(@1’@2) ckileZ}

into groups by figures congruent to S(T"), we obtain the family {S(T)U(S(T)),+
(2k,2l) : k,l € ZZ}, which is a tiling. By Proposition 4, S(T') is a development of
V. Moreover, S(T) is a ki ke-omino and it satisfies Condition 1 by the definition
of S(T). O

Definition 6. Let T be a development of a doubly-covered square V. Suppose
T is a k-omino and it satisfies Condition(1). Define a sequence {I}new as
follows:

1) Th=T.
(2) Forn>1,Tpt1 =T(T,).

A tile F is called self-replicating or k-replicating if there are k congruent copies
of F' such that interiors of any two of them are disjoint and that their union is
similar to the original figure F'. The k-replicating tile F' is called three-colorable
if there is an assignment of three colors to these k congruent copies of F' so that
any two adjacent copies have different colors.

Theorem 4. ([4]) Let T be a development of the doubly covered square V. Sup-
pose T is a k-omino satisfying Condition 1. Then the sequence {Tp}new con-
verges to a tile, denoted by Ty, in the Hausdorff-metric for compact sets in
the plane and Ty is a development of V. Moreover, To, is k-replicating and
three-colorable.

Proof. Let T be a development of the doubly covered square V which is a k-
omino satisfying Condition 1. By Lemma 4 the sequence {T}, } new is well-defined.
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For n > 1 the Hausdorff-metric distance between T, and 7,41 is less than
(1/Vk)™c where c is a constant. So {T},,c 77 is a Cauchy-sequence and it con-
verges to a compact set Too. The sequence of their boundaries {907}, }new also
converges to a simple closed curve. Hence Ty, is a tile and a development of V.
For T, there are k congruent copies 7 = {Fi}le of T, so that their union is
similar to T, and it is a subfamily of the stamp method tiling by T,,. Hence 7
is three-colorable. O

A simple curve I' in the plane is called a fractal if its Hausdorff-dimension is
greater than one. Let T be the development of V' in Fig. 6(a). In each step of
the construction for the sequence {7, } e, enlarging the figure by the ratio v/5
results in the boundary 07,11 whose the total length is three times that of 9T,.
Hence the Hausdorff-dimension of the boundary 97 is log, /5 3. The boundary
of T, is fractal.

Remark. Let a k-omino T be a development of a doubly covered square V' in the
plane with xy-coordinates. Define Condition 2 as follows:

Condition 2. Four points (0,0), (0,1), (1,1) and (1,0) are leaf-points of 90T and
they are vertices of some squares in the k-omino, and 7' is symmetry by half-turn
about the point (1/2,1/2).

Then all statements in this section hold for T satisfying Condition 2 instead of
Condition 1. Proofs are almost the same as above, so we omit them.

Acknowledgement. The authors would like to express their thanks to Professor
Nikolai Dolbilin for his useful comments.
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Abstract. Let G and H be two graphs with the same vertex set V. It
is well known that a graph G can be transformed into a graph H by
a sequence of 2-switches if and only if every vertex of V has the same
degree in both G and H. We study the problem of finding the minimum
number of 2-switches for transforming G into H.

1 Introduction

A graphic sequence is the sequence of numbers that are vertex degrees of a
graph. Any degree sequence whose sum is even can be realized by a multigraph
having loops [3]. In this paper we consider simple graphs (graphs without loops
and multiple edges). Erdés and Gallai [2] found a characterization of graphic
sequences.

Theorem 1 (Erdés and Gallai [2]). 4 sequence of positive numbers dy >
de > --+ > dy, is graphic if and only if di + do + --- + dy, is even and the

iequalities
n

k
> di <k(k—1)+ Y min{k,d;}
i=1 i=k+1
hold for every k.

Havel [4] and Hakimi [3] found another characterization of graphic sequences.

Theorem 2 (Havel [4], Hakimi [3]). For n > 1, a sequence S of n nonneg-
ative integers is graphic if and only if S’ is graphic, where S’ is the sequence of
size n — 1 obtained from S by deleting its largest element d and subtracting 1
from its d next largest elements. The only 1-element graphic sequence is dy = 0.

The following transformation of a graph preserves the degree sequence.

Definition 1. A 2-switch is the replacement of a pair of edges (a,b) and (c,d)
in a simple graph by the edges (a,c) and (b,d), given that (a,c) and (b,d) did
not appear in the graph originally.

H. Tto et al. (Eds.): KyotoCGGT 2007, LNCS 4535, pp. 25{32] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. 2-switch

It is clear that the degrees of the vertices remain unchanged when a 2-switch is
applied to a graph. The following theorem shows that two graphs with the same
graphic sequence can be transformed one to the other using 2-switches.

Theorem 3. If G and H are two simple graphs with vertex set V', then dg(v) =
dy(v) for every v € V if and only if there is a sequence of 2-switches that
transforms G into H.

Note that the graphs G and H have the same set of vertices. It can also be
viewed as two labelled graphs with the same set of labels.

Probably the earliest reference of Theorem Bl is Berge [1] stating that the 2-
switch graph on the set of graphs with fixed degree sequence is connected. It
also can be found in West [5, page 45]. Some feel that this is ”implicit” in the
work of Havel and Hakimi [6]. In the proof of Theorem [B] both G and H are
reduced to a canonical graph with vertex set V. Each reduction uses at most
m — 1 transformations where m is the number of edges in G (see more details
in Section [Z). Thus, the number of 2-switches transforming G to H is at most
2m — 2. Finding the minimum number of 2-switches transforming given G and
H is of particular interest of this paper.

Let G = (V,Eg) and H = (V, Ey) be two simple graphs such that dg(v) =
dy (v) for every v € V. We consider a new graph F(G, H) or just F defined as
(V,Er) where Er = Eq U Eg — Eg N Ey. We color the edges of F with two
colors as follows. An edge e is colored in (i) red if e € Eq — Eg, and (ii) blue if
e € Eg — Eg. The number of red edges and the number of blue edges in F are
equal. We denote it by r(G, H).

The set of edges of F' can be decomposed into red-blue alternating walks (note
that the vertices of a walk may not be pairwise distinct). Let p(G, H) be the
maximum number of walks in a decomposition of a F' into red-blue alternating
walks. Our main result is the following theorem.

Theorem 4. Let G = (V,Eq) and H = (V,Eg) be two simple graphs such
that dg(v) = du(v) for every v € V. The smallest number of 2-switches for
transforming G into H is equal to r(G, H) — p(G, H).

2 Preliminaries

Let G = (V, Eg) and H = (V, Eg) be two simple graphs such that dg(v) = dg(v)
for every v € V. We consider a new graph F(G, H) or just F defined as (V, Er)
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where Ep = Eg U Eyg — Eg N Eg. We color the edges of F' with two colors as
follows. An edge e is colored in

—redife € Eg — FEy,
— blue if e € Eyg — Eg.

We call the coloring of F' even since, for any vertex v, equal number of red
and blue edges are incident to v. It implies that the number of red edges and the
number of blue edges in F' are equal. We denote it by 7(G, H). We also consider
the complete graph K, with the set of vertices V. Clearly, F is the subgraph
of K. We color the edges of K,: the common edges of F and K,, are colored
in red and blue as before and the other edges are colored in black and white as
follows. An edge e is colored in

— black if e € Eyg N Eg,
— white if e ¢ Eqc U FEyg.

Since the coloring of F' is even, the set of edges of F' can be decomposed into
red-blue alternating walks. A walk is not a simple path since some vertices may
be repeated. We assume that the edges in a walk are all distinct.

The proof Theorem [3] uses a canonical graph C with vertex set V defined
inductively as follows. Let vy, vs,...,v, be the vertices of V sorted such that
their degrees form a non-increasing sequence d(vy) > d(vz) > ... d(vy,). Consider
the sequence

d(”Q) - 17 d(v?)) -1,... ) d<vk+1) - 17d(vk+2)7 BERE) d(”n)

where k = d(v1). By Theorem 2] it is a graphic sequence. Let C’ be a canonical
graph corresponding to it. Then C is obtained from C’ by adding a new vertex
vy and edges (v1,v2), (v1,v3), ..., (V1,Vk41)-

The main argument in the proof of Theorem [ is as follows. Consider two
sets S = {v2,v3,...,vk+1} and N(v1), the set of neighbors of v;. If S = N(vy),
then the theorem holds by induction hypothesis. If S # N(v1), then any edge
connecting v; and a vertex z ¢ S can be flipped to an edge connecting v, and a
vertex x € S — N(v1) using a 2-switch. By repeating this step we spend at most
k transformations for the induction step. With every 2-switch we insert a new
edge of the canonical graph C'. In the last 2-switch we add two edges of C. So,
the total number of 2-switches is at most m — 1.

This gives an upper bound of 2m — 2 for transformation the graph G to H.
Theorem Ml implies that, if m > 0, then at most (m — 1) 2-switches suffice since
r(G,H) <m and p(G,H) > 1.

3 Main Result

Our main result characterizes the 2-switch distance between two graphs. We
denote the distance by (G, H) = r(G, H) — p(G, H). First, we prove lower and
upper bounds for 2-switches.
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red ¢ ¢ a?____?c
—— blue e | | (a)
- --- black
- - -
- - - — white b d b d
a c a c

Cs
() -
b d b d

Fig. 2. Case 1 of the lower bound. Red and blue edges are shown as solid lines, bold
and thin respectively. Black and white edges are shown as dashed lines, bold and thin
respectively. The edges (a,b) and (c,d) are red and the edges (a,c) and (b,d) are (a)
both blue, and (b) blue and white, and (c),(d) both white.

Lemma 1 (Lower Bound). Let G’ be the graph obtained by a 2-switch from
G. Then

Proof. Consider any 2-switch of edges ab and cd by the edges ac and bd. The
edges ab and cd are colored in red or black each. The edges ac and bd are colored
in blue or white each. Let C’ be a partition of F(G’, H) into p(G’, H) alternating
walks.

Case 1. Both edges (a,b) and (c,d) are red

Suppose that the colors of (a, ¢) and (b, d) are blue, see Fig.2l(a). Then r(G, H) =
r(G', H) 4+ 2. The walks of C' and abdca form a partition of the set of edges of
F(G, H) into alternating walks. Therefore p(G, H) > p(G’, H) + 1. The bound
@ follows.
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Suppose that the colors of (a, ¢) and (b, d) are blue and white respectively, see
Fig. 2l (b). Then r(G,H) = r(G', H) + 1. One of the walks of C’ contains (b, d).
We replace (b, d) with bacd to obtain the set of alternating walks for F/(G, H).
Thus p(G, H) > p(G’', H). The bound (@) follows.

Suppose that the colors of (a,c) and (b,d) are white, see Fig. 2 (c). Then
r(G,H) = r(G', H). If the red edges (a,c) and (b,d) belong to different walks
Cy and Cy of €', then Cy — {(a,¢)} and Cy — {(b,d)} can be combined in one
alternating walk with (a, ) and (¢, d) in F(G, H), see Fig.[2 (c). Thus p(G, H) >
p(G', H) — 1. The bound () follows.

If the red edges (a, c¢) and (b, d) are connected in one alternating walk C, then
p(G,H) > p(G', H) + 1, see Fig. 2 (d). The bound () follows.

Case 2. The edge (a,b) is red and the edge (c,d) is black
Suppose that the colors of (a, ¢) and (b, d) are blue, see Fig.Bl(a). Then r(G, H) =
r(G’, H) 4+ 1. By replacing the edge (¢, d) in an alternating walk from C’ by cabd
we bound p(G, H) > p(G', H). The bound () follows.

Suppose that the colors of (a,c) and (b,d) are blue and white respectively,
see Fig. Bl (b). Then r(G, H) = r(G’, H). If the edges (b,d) and (¢, d) are in two
alternating walks Cy and C5 of C’, then they can be combined in one alternating

c a C a C a C
| G =" ="
e e
— 3 --- Y

(a) (b)

a
a a c S
—> —
b
b y b
C
(c) (d)
Cy
a c a c a c
-t
: — s 1 .
__ % 3
b d b 7 b
Cs

Fig. 3. Case 2 of the lower bound



30 S. Bereg and H. Ito

a c a C a c a c
1 -- 1 --
o o
—4 -- [

b d b d b d b d

(a) (b)
a ¢ a c
| S |
e
- -4
b d b d
(c)
a c a c a c
d d
b b b d
(d) (e) (f)

Fig. 4. Case 3 of the lower bound

walk Cy U Cy U {(a,b), (a,c)} — {(b,d), (c,d)}, see Fig. B (c). If the edges (b,d)
and (¢, d) are in a same alternating walk, then they can be replaced by (a,b)
and (a,c). In both cases p(G, H) > p(G', H) — 1. The bound (D) follows.

Suppose that the colors of (a,c) and (b,d) are white, see Fig. Bl (e). Then
r(G,H) =r(G',H)—1. To bound p(G, H) we check the walks of C’ containing the
edges (a, ¢), (¢, d) and (b, d). If there are three walks, then they can be combined
in one walk for G, see Fig. B (e). The number of walks can be two or one, see
Fig. Bl (f). In all cases p(G, H) > p(G’, H) — 2 and the bound () follows.

Case 3. The edges (a,b) and (c,d) are black

Suppose that the colors of (a, ¢) and (b, d) are blue, see Fig.@ (a). Then r(G, H) =
r(G',H) and p(G,H) > p(G',H) — 1 by an argument similar to Case 1 where
(a,c) and (b,d) are white. The bound () follows.

Suppose that the colors of (a,c) and (b,d) are blue and white respectively,
see Fig. @l (b). Then r(G,H) = r(G',H) — 1 and p(G,H) > p(G',H) — 2 by
an argument similar to Case 2 where (a,¢) and (b, d) are white. The bound ()
follows.

Suppose that the colors of (a,c) and (b,d) are white, see Fig. [ (c). Then
r(G,H) =r(G',H) — 2. If abeda is a walk of C’, then p(G, H) > p(G', H) — 1. If
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V2 'U3

U1 V4 U7 A Vg U7 A V4

Vg U5 Vg U5 Vg U5

Fig.5. Lemmal2 (a) vi # v4 or v2 # vs. (b) (v1,v4) is red. (c) (v1,v4) is blue.

Vo U3 () U3 () U3 Vg
ro- r--
— —
C C
() (b)

Fig.6. Lemmal2 (a) (v1,v4) is white. (b) (v1,v4) is black.

the edges of abcda participate in two walks of C’, then p(G, H) > p(G', H)—1, see
Fig.[ (d). If the edges of abeda participate in three cycles of C’, then p(G, H) >
p(G’', H) — 2, see Fig. Ml (e). If the edges of abeda participate in four cycles of C’,
then p(G, H) > p(G', H) — 3, see Fig. @ (f). In all cases p(G,H) > p(G',H) — 3
and the bound () follows. O

Lemma 2 (Upper Bound). Let G = (V,Eg) and H = (V, Eg) be two simple
graphs such that dg(v) = dg(v) for every v € V. There exists a 2-switch in G
or H that decreases the distance ¥(G, H) by exactly one.

Proof. The graph F(G, H) can be partitioned into p(G, H) alternating walks.
From all partitions of F(G, H) into p(G, H) alternating walks, we select a par-
tition C such that its shortest walk C' = vyvs ... v has minimum length.

Suppose that |C| = 4. We apply a 2-switch in G replacing edges (v1,v2) and
(vs,vq) with (v1,v2) and (vs,v4). Let G' be the new graph. Then r(G',H) =
r(G,H) — 2 and p(G',H) = p(G,H) — 1. Thus, v(G',H) = ¢(G,H) — 1.

Now suppose that |C| > 6. Then vy # vgq or vy # vs since the edges (v1,v2
and (v4,vs) have different colors, see Fig. [ (a). Without loss of generality we
assume that v1 # vs. We consider 4 cases depending on the color of (v, v4).

Suppose that (v1,v4) is red. Let C’ be a walk in C containing (v1,v4). The
edges of CUC" can be partitioned into two walks so that one walk is v1v4vs . . . vk,
see Fig. Bl (b). This walk is shorter than C’. Contradiction.
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If (v1,v4) is blue, then again C'UC" can be partitioned into two walks so that
one walk is 4-cycle v1v9v3v4, see Fig. [ (c).

If (v1,v4) is white, then apply a 2-switch in G replacing edges (v1,v2) and
(vs,vq) with (v1,v4) and (va,v3). If (v1,v4) is black, then apply a 2-switch in
G replacing edges (vi,v4) and (ve,vs) with (v1,v2) and (v3,v4). In both cases
this reduces v1v9v3v4 in C to vivg. Let G’ be the new graph. Then r(G', H) =
r(G,H)—1and p(G', H) = p(G, H), see Fig. [0l The lemma follows. O

Theorem M simply follows from the upper and lower bounds.

Acknowledgment. The authors thank anonymous referees for their valuable com-
ments, especially for simplifying the proof of the upper bound.

References

1. Berge, C.: Graphes et hypergraphes, Monographies Universitaires de Mathémati-
ques, vol. 37. Dunod, Paris (1970)

2. Erdés, P., Gallai, T.: Graphs with prescribed degrees of vertices. Mat. Lapok 11,
264-274 (1960)

3. Hakimi, S.L.: On the realizability of a set of integers as degrees of the vertices of a
graph. SIAM Journal on Applied Mathematics 10, 496-506 (1962)

4. Havel, V.: A remark on the existence of finite graphs. Casopis pro Péstovani Matem-
atiky 80, 477-480 (1955) [Czech]

5. West, D.: An Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs (1995)

6. http://www.math.uiuc.edu/~west/igt/igtold.html


http://www.math.uiuc.edu/~west/igt/igtold.html

The Forest Number of (n, m)-Graphs

1,2,% 2, %%

Avapa Chantasartrassmee and Narong Punnim

! University of the Thai Chamber of Commerce, Bangkok 10400, Thailand
avapa- cha@utcc.ac.th
2 Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand
narongp@swu.ac.th

Abstract. Let G = (V, E) be a graph and F C V. Then F is called
an induced forest of G if G[F] is acyclic. The forest number, denoted by
f (@), of G is defined by

f(G) := max{|F| : F is an induced forest of G}.

We proved that if G runs over the set of all graphs of order n and size
m, then the values f(G) completely cover a line segment [z, y] of positive
integers. Let G(n,m) be the set of all graphs of order n and size m and
GG (n,m) be the subset of G(n, m) consisting of all connected graphs. We
are able to obtain the extremal results for the forest number in the class

G(n,m) and CG(n, m).

AMS Mathematical Subject Classification(2000): 05C07

1 Interpolation Theorems

We consider only finite simple graphs. Let G = (V, E) denote a graph with
vertex set V = V(@) and edge set F = E(G). The order and the size of G are
denoted by v(G) = |V| and £(G) = |E|, respectively. The degree of a vertex v of
a graph G is denoted by dg(v). The maximum degree and the minimum degree
of a graph G is usually denoted by A(G) and §(G), respectively. If S C V(G),
the graph G[S] is the subgraph induced by S in G and we use the notation &(.5)
for e(G[S]). For a graph G and X C F(G), G— X denotes the graph (V, E— X).
If X = {e}, we write G — e for G — {e}. For a graph G and X C V(G), G— X is
the graph obtained from G by removing all vertices in X and all edges incident
with vertices in X. For a graph G and X C E(G), G + X denotes the graph
(V,EUX). If X = {e}, we simply write G+ e for G+ {e}. Two graphs G and H
are disjoint if V(G) NV (H) = 0. For any two disjoint graphs G and H, GU H
is defined by V(GUH) =V(G) UV (H) and E(GUH) = E(G) U E(H) and the
union of p copies of G is denoted by pG. We can extend this definition to a finite
union of pairwise disjoint graphs.

* Corresponding author: Ph.D. student, Srinakharinwirot University, Supported by
University of the Thai Chamber of Commerce.
** Supported by The Thailand Research Fund.

H. Tto et al. (Eds.): KyotoCGGT 2007, LNCS 4535, pp. 33{40] 2008.
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Let G be the class of all simple graphs. A function 7 : G — Z is called a
graph parameter if 7(G) = w(H) for all isomorphic graphs G and H. A graph
parameter 7 is called an interpolation graph parameter over J C G if there exist
integers x and y such that

(@) Ge T} =[xy ={keZ:x<k<y}

If 7 is an interpolation graph parameter over J, then {7 (G) : G € J} is uniquely
determined by min(w, J) = min{n(G) : G € J} and max(w, J) = max{n(G) :
GeJ}.

For positive integers n and m (0 < m < (3)), let G(n,m) be the class of
all distinct spanning subgraphs of K,, and size m. Let CG(n,m) be the subset
of G(n,m) consisting of all connected graphs. We simply write min(m;n,m)
and max(7; n, m) for min(7, G(n, m)) and max(w, G(n, m)), respectively. Also we
write Min(m;n, m) and Max(m; n, m) for min(w, G (n, m)) and max(w,CG(n, m)),
respectively.

Interpolation theorems for graph parameters may be divided into two parts,
the first part deals with the question that given a graph parameter 7 and a
subset J of G, does 7 interpolate over J? If 7 interpolates over J, then {n(G) :
G € J} is uniquely determined by min(rw, J) and max(w, J). The second part
of the interpolation theorems for graph parameters is to find min(wr, J) and
max(7,J) for the corresponding interpolation graph parameters and this part
is the extremal problems in graph theory.

Several graph parameters over the class of all graphs with the same degree
sequence were proved to interpolate and were presented the two parts of the
interpolation theorems by the second author in [3].

Let G be a graph and F' C V(G). F is called an induced forest of G if G[F] is
an acyclic graph. The maximum cardinality of an induced forest of a graph G is
called the forest number of G and is denoted by f(G). That is

f(G) := max{|F| : F is an induced forest of G}.
The second author proved in [2] the following theorems.

Theorem 1. The forest number f is an interpolation graph parameter over
G(n,m). O

Theorem 2. The forest number f is an interpolation graph parameter over

GG (n,m). O

2 Extremal Results

Note that f is an interpolation graph parameter over G(n, m) and G (n, m). We
now answer the second part of interpolation theorem.

Let G be a graph and X,Y be disjoint nonempty subsets of V(G). Denote by
e(X,Y) the number of edges in G connecting vertices in X to vertices in Y.
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Let G € G(n,m) and F be a maximum induced forest of G. Let |F| = a.
Therefore G — F' has order n — a. An upper bound of m can be obtained by the
following inequality.

m=e(G—F)+e(G—FF)+e(F) < <” a)—l—a(n—a)—i—(a—l).

Let a=n—iforany i € {1,2,...,n —2}. We get m < (i + 1)n — i2+§i+2.

For an integer ¢ = 1,2,...,n — 2, let M,(n —4) = (i + 1)n — ¢2+g¢+2. It is
clear that M,,(n — i) is an integer. We can show that max(f;n, m) = n—1 if and
only if M, (n — i+ 1) < m < M,(n — i) by constructing a graph G € G(n,m)
with M, (n —i+ 1) <m < M,(n —i) and f(G) =n — i as follows.

Let G be a graph with V(G) = X UY where X = {v1,v2,...,0p—i}, ¥ =
{ui,ug,...,u;} and E(G) = {vjvjq1 : 1 < j <n—i—1}U{ww : u,v € Y}U{u, vy
1<j<i-1,1<k<n—i}U{uwg:1<k<m-M,n—i+1)+1}. Itis
easy to check that f(G) =n —i and G € CG(n,m). Thus we have the following
theorem.

Theorem 3. Letn andm be integers satisfying0 < m < (g) Then max(f;n,m)
=n—1iif and only if M,(n—i+1) <m < M, (n—1i), and Max(f;n,m) =n—1
if and only if m>n—1 and M,,(n —i+1) <m < M,(n —1). m]

The problem of finding min(f;n,m) is difficult and finding Min(f; n,m) is even
more difficult. In order to obtain the values of min(f;n, m), we first find the
minimum number of edges of a graph order n having the forest number a. Let
G(n; f = a) be the set of graphs of order n having the forest number a. It is clear
that G(n; f = a) # 0 if and only if 2 < a < n. For integers n and a, let

my(a) =min{e(G) : G € G(n; f =a)}.

Further, m,(n) = 0, m,(n — 1) = 3 and m,(2) = (). It is easy to see that
for a graph G of order n > 2, f(G) = 2 if and only if G = K,,. We now find
my,(a) for 2 < a < n. The following lemma was proved in [I] which provide a
characterization of graphs with forest number 3.

Lemma 1. Let G be a graph of order n > 3 and G ¥ K,,. Then f(G) = 3 if
and only if G is a union of stars. O

By Lemma 1 we have m,(3) = (3) —n+ 1, for all n > 4. The second author

proved in [1I] the following lemma.

Lemma 2. If G is a graph of order n with mazimum degree A(G) = A, then
@)= 2. u
Lemma 3. If G is a graph of order n with A(G) = A and f(G) = 2q+ 1 for
some integer q, then n < (A+1)g+ 1.
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Proof. We will proceed by induction on g. Suppose that n = (A 4+ 1)q + ¢ for
some integer ¢ > 2. Since f(G) = 2¢ + 1, it follows by Lemma 2 that 2 <t < A.
Suppose that ¢ = 1, that isn = A+ 1++¢. Thus §(G) = ¢t > 2 and hence G is not
a union of stars. By Lemma 1, f(G) > 4. Therefore the result holds for ¢ = 1.
Suppose that there exists a graph G of order n = (A+1)g+t with f(G) =2¢+1
for smallest possible integer ¢ > 2. Let v be a vertex of G of degree A and let
H be the graph obtained from G by deleting v and its neighbors. Thus H has
order (A+41)(¢— 1)+t and by minimality of ¢, there exists a maximum induced
forest F' in H of order at least 2(¢ — 1) + 2 = 2¢. Since F, = F U {v} is an
induced forest of G and |F,| = |F| + 1, it follows that |F| = 2¢ and F, is a
maximum induced forest in G of order 2q + 1. Note that if T is a maximum
induced forest in a graph G and v € V(G — T), then there exists a nontrivial
connected component C of T such that v is adjacent to at least 2 vertices in C.
Since F,, contains at most 2q vertices of degree at least 1 and G — F, has order
(A —1)g+t—1, there are at least 2(A — 1)g + 2(t — 1) edges from G — F, to
the nontrivial components of F),. Since F, has at most 2q vertices of degree at
least 1 and Q(Afl)q:m*l) > A —1, it follows that there exists a vertex in F;, of
degree at least A + 1. Thus we get a contradiction. a

By Lemma 2, we have a lower bound on the maximum degree of a given graph in
terms of its order and its forest number. In other words, if G is a graph of order
n, then A(G) > [f%gﬂ — 1. In particular, if f(G) = 2q for some integer ¢, then
A(G) = [7]—1. By Lemma 3 the lower bound of A(G) can be improved if f(G)
is odd. That is, if f(G) = 2q + 1 for some integer ¢, then n < (A(G) + 1)g+1
which is equivalent to A(G) > f”;ﬂ — 1. We have the following corollary.

Corollary 1. Let G be a graph of order n and q be a positive integer. If f(G) =
2q, then A(G) =[] =1, and if f(G) =2q+ 1, then A(G) = f”;ﬂ - 1. |
Let G*(n; f = a) = {G € G(n; f = a) : G is a union of [J] cliques}. It is clear
that G*(n; f = a) C G(n; f = a). We have the following theorem.

Theorem 4. Let G be a graph of order n with f(G) = a. Then there exists a
graph H € G*(n; f = a) such that e(H) < ¢(G).

Proof. We will proceed by induction on n. The result holds for n = 1. Suppose
that n > 2. If there exists a vertex v of G such that f(G—v) = f(G)—1=a—1,
then, by induction, there exists a graph H' € G*(n — 1; f = a — 1) such that
e(H') <e(G-v).Let H= H'U{v}. Thus H € G*(n; f = a) and e(H) = ¢(H') <
e(G —v) < ¢(G). Suppose that for every vertex v of G, f(G —v) = f(G) = a.
Let v be a vertex of G of degree A(G). Thus, by induction, there exists a graph
H' € G*(n—1; f = a) such that e(H') < e(G — v). We consider two cases.

Case 1. Suppose that f = 2¢ for some integer q. Thus H’ is a union of at
least ¢ cliques. Therefore there exists a component C’ of H' such that C’ is
a clique of order at most L";lj. By Corollary 1, da(v) =[] — 1. Note that

[g1—1= L";lj. Let C be a clique obtained from C’ by adding v and at most



The Forest Number of (n, m)-Graphs 37

L™, "] edges from v to C". Let H = (H' = V(C"))UC. Then H € G*(n; f = a)
and e(H) <e(H')+ L";lj <e(G —v) +dg(v) <e(G), as required.

Case 2. Suppose that n > 4 and f = 2¢ + 1 for some integer q. Thus H' is a
union of at least ¢+ 1 cliques one of which is an isolated vertex. Therefore there
exists a component C’ of H' such that C’ is a nontrivial clique of order at most
|",?]- By Corollary 1, dg(v) > ["_ '] = 1. Note that [" '] —1=["_?]. Let C
be a clique obtained from C’ by adding v and at most L”fj edges form v to C".
Let H = (H'—V(C"))UC. Then H € G*(n; f = a) and e(H) < e(H')+ " 2| <

e(G —v) +da(v) < e(G), as required. ’ |
By Theorem 4, we know the structure of graphs of order n with prescribed
forest numbers. In general, for a graph G € G(n; f = a), there may be many
such graphs H € G*(n; f = a). We now seek for such a graph H with minimum
number of edges.

It is trivial that for any integer n > 6, m,(4) = ((g]) + (L%’J) and for n > 7,
m, (5) = (31 + (U37).

Theorem 5 is the famous result of Turdn [4] which is viewed as the origin of
extremal graph theory.

The Turdn graph T}, , is the complete r-partite graph of order n whose partite
sets differ in size by at most 1. It is clear that the complement of the Turdn graph
T, is a union of r cliques.

Theorem 5. Among the graphs of order n containing no complete subgraph of
order r + 1, T), » has the mazimum number of edges. a

By Theorem 5, we know that among the graphs of order n which is a union of
r cliques, the complement of the Turdn graph 7}, , has the minimum number of
edges.

Turén theorem can be applied for finding m,,(a) for 4 < a < n — 1. We first
establish certain facts and notation.

1. Let G = p1 K1 Ups K3 Ups K4 U. .. UpiKj. Then the order of G is py + 3ps +
4ps+ ...+ kpp and f(G) = p1 +2(p3 +pa + ...+ pr). Suppose that p; > 2,
pr > 1 and k > 4. Then by replacing 2K; U Kj by K3 U K;_1 we obtain a
graph H with e(H) < ¢(G). Furthermore, e(H) = ¢(G) if and only if k = 4.

2. m,(n—1)=3if n > 4. Let G € G(n; f =n—1). Then ¢(G) = 3 if and only
ifn>4and G=(n—-3)K;UKs.

3. Let a be an integer satisfying 2?:‘ <a<n-11If (p,q) is the solution of
p+3¢=mnand p+ 2g = a, then G = pK; U qK3 satisfies f(G) = a.

4. Let a be an integer satisfying 2; <a<n-2and G € G(n;f = a) such
that £(G) = m,(a). Then by Theorem 4, we can choose G = p1 K1 UpsK3U
paKaU. . Upp Ky € G*(n; f =a) and k < 4. If k = 4, then p; > 2. Thus by
the first fact above, there exists a graph H = pK;UqK3 such that p4+3q = n,
p+2¢=aand e(H) = &(G) = my(a).

5. Let a be an integer with a < 2; and G € G(n; f = a). Then, by Lemma 2,
A(G) > 3. Thus if G = p1 K1 UpsKs UpsKqaU ... Upp Ky, f(G) =a < 23"
and ¢(G) = my(a), then p; <1 and k > 4.
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6. f n=rqg+t¢t, 0<1t<r, then T, , consists of ¢ partite sets of cardinality
[™] and r — t partite sets of cardinality | .

7. &(Tnr) = ("5%) + (r = 1)(“%"), where a = "]

8. Let t(n,r) = &(Ty,). Then for a fixed n, by using elementary arithmetic, we
get t(n,r—1) < t(n,r) forallr, 2 <r < n.Infact t(n,r)—t(n,r—1) > (agl),
where a = [T |.

Let ¢(n,r) = () — &(Tn,»). Summarizing the results, we have the following
theorems.

Theorem 6. Let n and a be integers satisfying 2 < a <n — 1. Then

1. m,(n) =0,

2. m,(n—1)=34n>3 and G=(n—3)K; UKs is the only graph of order
n satisfying f(G) =n —1 and e(G) = 3,

8. my,(n—i)=3iif 1 <i<[}],

4. Suppose 4 < a < %'. Then my(a) = t(n,q) if a = 2q, and m,(a) = {(n—1,q)
if a =2q+ 1, for some integer q, and

5. m,(3)=("y") ifn>3, and m,(2) = (3) if n > 2. O

Theorem 7. Let n and m be integers satisfying 0 < m < (g) Then

1. min(f;n,m) = max(f;n,m) =n if and only if m € {0,1,2},

2. min(f;n,m) = max(f;n,m) =2 if and only if m = (g), and

3. for3<a<n-—1, min(f;n,m)=a if and only if m,(a) <m < my(a—1).
]

We now find the minimum number of edges of a connected graph order n having
the forest number a. Let CG(n; f = a) be the set of connected graphs of order n
having the forest number a. For integers n and a, let

cmy,(a) = min{e(G) : G € &G (n; f = a)}.

n

Further, cm, (n) =n — 1, cm,(2) = (5). We now find cm,,(a) for 2 < a < n.
Let &G (n; f = a) = {G € &G(n; f = a) : G is obtained from [5] disjoint
cliques and [ 5] — 1 edges}. We have the following theorem.

Theorem 8. Let G be a connected graph of order n with f(G) = a. Then there
exists a graph H € CG*(n; f = a) such that e(H) < &(G).

Proof. We will proceed by induction on n. The result holds for n = 1. Let n > 2.
Suppose that there exists a vertex v of G such that f(G—v) = f(G)—1=a—1.
Let G1,Ga, ..., G} be the k components of G — v having nq, na, ..., ny vertices,
respectively. Then dg(v) > k. Thus for each i € {1,2,...,k}, there exists a
graph H; € Cg*(nl,f = f(Gl)) such that 6(Hz) < 6(Gz) Let w; € V(Hl) and
H=H UHU...UH,U{v})+ X where X = {vw; : i = 1,2,...,k}. Then
H el (n;f=a)and e(H) = k+ .5, e(Hy) < da(v) + X7, £(Gy) < &(G).

Suppose that for every vertex v of G, f(G —v) = f(G) = a. Let v be a vertex
of G of degree A(G). We consider two cases.



The Forest Number of (n, m)-Graphs 39

Case 1. G — v is connected. Then there exists a graph H' € (G*(n — 1; f = a)
such that e(H') < e(G—v). If f = 2q for some integer ¢, then H’ is obtained from
q disjoint cliques and ¢—1 edges. Therefore there exists a clique C’ of H' of order
at most L"glj. By Corollary 1, dg(v) = [ ] —1. Note that [7] -1 = L";lj. Let
C be a clique obtained from C’ by adding v and at most L”;lj edges from v to
C'. Let H be a graph with V(H) = V(G) and E(H) = (E(H')— E(C"))UE(C).
Then H € 6G*(n; f = a) and e(H) < £(G), as required.

If n > 4 and f = 2¢ + 1 for some integer ¢, then H' is obtained from ¢ + 1
cliques and ¢ edges where one of cliques is an isolated vertex. Therefore there
exists a non-trivial clique C’ of H' of order at most L";QJ. By Corollary 1,

dg(v) > f";} — 1. Note that f";} -1= L";QJ. Let C be a clique obtained
from C’ by adding v and at most L”;2J edges from v to C'. Let H be a graph with
V(H) =V(G) and E(H) = (E(H') — E(C")) UE(C). Then H € (G*(n; f = a)
and e(H) < ¢(G), as required.

Case 2. G — v is disconnected. Let G1,Gs,...,G; be the k components of
G — v having nq,na, ..., n; vertices, respectively. For each i € {1,2,... k}, we
put G = GIV(G;) U{v}] and G' = G[V(G — G;) U {v}]. Suppose that there
exists i;1 < i < k such that f(G}) = f(G;) + 1. Then f(G’) = f(G;) for all
j # i. Then G’ is a connected graph of order n’ = n — n; such that f(G') =
FUEL,—1 Gy) = b1 £(G)). Thus for w € V(G;), H* = (G; UG') + {vw}
is a connected graph of order n such that e(H*) = €(G;) + e(G') + 1 < ¢(G)
and f(H*) = f(Gi)+ f(G") = 3.5_, f(G;) = f(G —v) = a. Then there exist
H; € CG*(ns; f = f(Gy)) and H' € CG*(n'; f = f(G")) such that e(H;) < &(G;)
and e(H') < e(G'). Let w € V(H;) and H = (H; U H') + {vw}. Then e(H) =
e(H:) + e(H') +1 < e(Gi) +2(G) + 1 < £(G) and f(H) = f(H,) + f(H') =
f(Gy) + f(G") = f(G) = a. Thus H € (G"(n; f = a) and ¢(H) < £(G), as
required.

Suppose that f(G}) = f(G;) for all i € {1,2,...,k}. If G; is a complete
graph for all 4, then G} is complete. Since G; is complete, it follows that for any
e € E(G;), f(Gi—e) = f(G;)+1. Then for w € V(G;), H* = ((G;—e)UG’)+{vw}
is a connected graph of order n such that e(H*) = ¢(G; —e) +e(G') +1 < ¢(G)
and f(H*) = f(G; —e) + f(G') = f(Gi) + f(G')+1=YF_| f(G)) = f(G). By
the same argument in the first part of Case 2, there exists H € CG*(n; f = f(G))
such that ¢(H) < e(G —e) < ¢(G), as required.

Assume that there exists j;1 < j < k such that G is not complete. Then
for any ¢ € {1,2,...,k} there exists H; € (G (n;; f = f(G;)) such that e(H;) <
e(G;). For w; € V(H;), we put H* = UleHi + X where X = {vw; : i =
1,2,...,k}. Then H* is a connected graph of order n with e(H*) < ¢(G) and
JH?) = S50 f(H) = Y0 f(Gi) = Yo7, f(G) = f(G) = a.

We put H! = H*[V(H;) U {v}]. Then there exists i;1 < 4 < k such that
f(H!) = f(H;) + 1. By the same argument in the first part of Case 2, there
exists H € CG*(n; f = a) such that e(H) < e(H*) < (@), as required. O
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By Theorem 8 we know that for a graph G € CG(n; f = a), there may be many
such graphs H € (G*(n;f = a). By applying Turén Theorem, we have the
following theorems.

Theorem 9. Let n and a be integers satisfying 2 < a <n —1. Then

1. ecmy(n) =n—1,

2. Suppose 4 < a < n — 1. Then ecmy(a) = t(n,q) + ¢ — 1 if a = 2q, and
cmy(a) =t(n—1,9)+q if a =2q + 1, for some integer q, and

3. em,(3) = (";') + 1 ifn >3, and ecm,(2) = (}) if n > 2. |

Theorem 10. Let n and m be integers satisfying n —1 < m < (g) Then

1. Min(f;n,m) = Max(f;n,m) =n if and only if m =n — 1,

2. Min(f;n,m) = Max(f;n,m) =2 if and only if m = (g), and

3. for3 <a<n-1,Min(f;n,m)=a if and only if cm, (a) < m < cm,(a—1).
]
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Abstract. Given a simple polygon P with m vertices, a set X = {z1, x2,
..., Tn } of m points within P, a start point s € X, and an end point ¢t € X,
we give an O(n®logm + mn) time, O(n® + m) space algorithm to find
O(n?) simple polygonal paths from s to ¢ that have their vertices among
the points in X and stay inside P, or report that no such path exists.

1 Introduction

In this paper we study the following problem: Given a simple polygon P with
m vertices, a set X = {x1, 3, ...,2,} of n points within P, a start point s € X,
and an end point ¢t € X, find a simple polygonal path K from s to ¢ (a path
without self-intersections) that has its vertices among the points in X and stays
inside P, or report that no such path exists (see Figure[Il). The points in X are
allowed to be on the edges or at the vertices of P and a line segment of K can
be tangent to a vertex of P.

Obviously, if self-intersection is allowed then an s-to-t path with vertices in X
can be found by computing the visibility graph of X. However, in our problem,
self-intersections are not allowed. We also make the following simple observa-
tions: (1) While a shortest s-to-t path in P always exists, it is possible no simple
s-to-t path exists; (2) In general, a shortest s-to-t path in P, restricted to turn
only at points in X, is not a simple path, as illustrated in Figure [} (3) If there
exists an s-to-t path that turns only at points in X then there exists a shortest
s-to-t path that turns only at points in X; (4) The existence of an s-to-t path
that turns only at points in X does not guarantee the existence of a simple
s-to-t path that turns only at points in X.

The problem we study is a special case of finding a simple path on points
while avoiding a set of obstacles in the plane. In our problem, the obstacle
set is the union of connected line segments. The problem, both in its general
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Fig.1. A simple s-to-t path that turns on points in X (bold line), a shortest s-to-t
path that turns on points in X and is not a simple path (dotted line), and the shortest
s-to-t path in P (bold dashed line)

form and in the special form studied in this paper, has been introduced in [3].
They have motivated it by its applications to polygon generation, where given
a set of points X inside a simple polygon P one wishes to generate simple, or
x-monotone, polygons with vertices in X [1, 13, [7].

In [3], they consider the problem of finding a simple path on points while
avoiding a set of obstacles in the plane and prove it is NP-complete for arbitrary
obstacles. For the special case when the obstacles form a simple polygon P and
X is in P, they give a polynomial, O(m?n?) time and space algorithm, based on
dynamic programming. Their dynamic programming solution is straightforward.
First, they pair the points of X with the vertices of P based on visibility: a point
is paired with a vertex if they are visible inside P. Each of the resulting pairs
corresponds to a vertex in a graph G, and G can have 2(mn) vertices in the
worst case. Then, directed edges are added between vertices of G based on a
simple partition rule and there can be £2(m?n?) edges in the worst case. The
graph is acyclic and an s-to-t path in G is the sought solution. Thus, recent
results on computing the visibility graph of X within P [2] would not help in
speeding up the algorithm in [3].

In contrast, for the special case of points within a simple polygon, we present
a new algorithm based on the construction of a pyramid graph. In this graph,
a node corresponds to a pair of points of X that can see each other in P. Two
nodes defined by the oriented pairs (x;, z;) and (z;, x%) are connected by an edge
if ; and ) are not visible in P; in this case, the points z;, x;, and x;, define a
pyramid. For example, in Figure[I] the points 1, z2, and ¢ define a pyramid. The
algorithm requires O(n3 logm 4 nm) time and O(n® +m) space. Our algorithm,
called MOD — SSSP, resembles a single source shortest path algorithm and is
executed on the pyramid graph of X (it requires the computation of the visibility
graph of points within a simple polygon [2, 4]). The key contribution is how to
make sure that when a line segment (u,v), with v, v € X, is added to the simple
path constructed so far, all possible simple paths which start at s and end at
u have been considered, and the line segment (u,v) does not intersect with at
least one of those simple paths. The foundation of our algorithm is given by an
interesting property that relates the shortest paths in P (without the restriction
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that they turn at points in X) with simple paths in P that turn only at points
in X, that may be of more general interest. Intuitively, this property says that
a simple s-to-t path travels in the same “direction” as the shortest path (see
Lemma [l and Lemma [7]). Compared to the previous solution, our algorithm

reduces the space from O(m?n?) to O(n?) whenever m = w(y/n), and improves

m
logm

one but O(n?) simple paths from s to t.
Overall, our solution proves other competitive approaches are possible, and
opens the door to more efficient solutions for the problem addressed in this

paper.

over the running time whenever n = o( ). Moreover, it can report not only

2 Preliminaries

In this section, we give the definitions and notations that will be used in the
rest o